Magnetoelectric Properties of Multiferroic *R*MnO₃

Thomas Lottermoser Tsukuba, March 2004

Magnetoelectric Properties of Multiferroic RMnO₃

> Multiferroics and the Magnetoelectric Effect

Nonlinear Optics

Hexagonal Manganites

Experimental Results

> Summary

Multiferroic Compounds

Compounds with simultaneous (anti-)ferromagnetic, ferroelectric and/or ferroelastic ordering (Aizu 1969)

 \Rightarrow Multiferroics

1958 Idea of new compounds with coexisting magnetic and electric ordering by Smolenskii and loffe

1966 First experimental proof of a "multiferroic effect" by Ascher et al.

1975 Suggestions for technical applications based on multicferroic properties by Wood and Austin

...

2000 "Why are there so few magnetic ferroelctrics?" by Hill

Linear Magnetoelectric Effect

- New materials with structural (heterostructures) or gigantic (multiferroic) magnetoelectric effects
- New theoretical concepts

Magnetoelectric Properties of Multiferroic RMnO₃

Magnetoelectric Properties of Multiferroic RMnO₃

Multiferroics and the Magnetoelectric Effect

Nonlinear Optics

Hexagonal Manganites

Experimental Results

> Summary

Optical Second Harmonic Generation

In general: Multipole expansion of source term \vec{S} for SHG: $\vec{S} = \mu_0 \frac{\partial^2 \vec{P}^{NL}}{\partial t^2} + \mu_0 \left(\vec{\nabla} \times \frac{\partial \vec{M}^{NL}}{\partial t} \right) - \mu_0 \left(\vec{\nabla} \frac{\partial^2 \hat{Q}^{NL}}{\partial t^2} \right)$ \Rightarrow Three nonlinear contributions: Electric dipole (ED): $\vec{P}^{NL}(2\omega) \propto \hat{\chi}^{ED} : \vec{E}(\omega)\vec{E}(\omega)$ Magnetic dipole (MD: $\vec{M}^{NL}(2\omega) \propto \hat{\chi}^{MD} : \vec{E}(\omega)\vec{E}(\omega)$ Electric quadrupole (EQ): $\hat{Q}^{NL}(2\omega) \propto \hat{\chi}^{EQ} : \vec{E}(\omega)\vec{E}(\omega)$

 $\begin{array}{lll} \begin{array}{lll} \underline{SH \ source \ term} & S_i(2\omega) \propto \ \chi_{ijk} \ E_j(\omega) E_k(\omega) \\ \hline \underline{SH \ intensity} & I_{SH} \propto |S(c) + S(i)|^2 \\ & \propto |\chi(c) + A \ e^{i\psi} \ \chi(i)|^2 \ I^2(\omega) \\ \hline = & (\chi^2(c) + A^2 \ \chi^2(i) + 2A \ \chi(c) \ \chi(i) \ \cos \psi) \ I^2(\omega) \\ & always > 0 & interference \ term \\ \hline \end{array}$

Magnetoelectric Properties of Multiferroic RMnO₃

MBI

Experimental Setup

Basic setup with a pulsed Nd:YAG - OPO laser system (3 ns, ≤100 Hz, 0.4 - 3.0 µm)

Phase Resolved SH Imaging

Phase-Resolved SH Imaging (Results)

Advantages:

- Allows use of broadband laser sources with poor beam quality
- Large working distances (~1 m)
- More experimental freedom
- Improved image quality
 - Opt. Lett. 29, 41 (2004)

Magnetoelectric Properties of Multiferroic RMnO₃

SHG on Ferroelectric HoMnO₃ Domains

- 180° phase difference between SH contributions from opposite FEL domains
- 90° phase shift and drastic decrease of SH intensity in unpoled region
- Many samples exhibit asymmetry with respect to the direction of the poling field

Magnetoelectric Properties of Multiferroic RMnO₃

Multiferroics and the Magnetoelectric Effect

Nonlinear Optics

> Hexagonal Manganites

Experimental Results

> Summary

Multiferroic Manganites RMnO₃

First publications by Yakel and Bertaut on ferroelectric and antiferromagnetic properties in 1963

Dramatic increase of worldwide interest:

Groups in Canada, Germany, Japan, Korea, Netherlands, Russia, Spain, USA,...

Main topics:

- Crytallographic and magnetic structure
- > Thin films and ferroelctric properties (\rightarrow application)
- Multiferroic/magnetoelectric properties

Hexagonal manganites
$$RMnO_3$$
 ($R = Sc, Y, In, Ho, Er, Tm, Yb, Lu$)

 $T < T_C \approx 600-1000 \text{ K} \implies \text{ferroelectric (FEL) + paramagnetic (PM)}$

 $T < T_N \approx 70-130 \text{ K} \implies$ ferroelectric (FEL) + antiferromagnetic (AFM)

 $T < T_{RE} \approx 5 \text{ K}$ \Rightarrow FM or AFM order of R³⁺-spins for R = Ho - Yb

Max-Born-Institut

Crystallographic and Magnetic Structure

Ferroelectric phase transition:

Breaking of inversion symmetry I!

Order parameter: \mathcal{P}

Antiferromagnetic phase transition of the Mn³⁺ sublattice:

Breaking of time-reversal symmetry T, but *not* of inversion symmetry I!

Order parameter: *l*

Magnetic Structure and SHG Selection Rules

At least 8 different triangular inplane spin structures with different magnetic symmetries and different selection rules for SHG

 $\alpha_{y} \rightarrow \beta_{x}: \qquad \chi_{xxx} \propto \sin \phi, \ \chi_{yyy} = 0$

Contrary to diffraction techniques: α and β models clearly distinguishable!

Magnetoelectric Properties of Multiferroic RMnO₃

Multiferroics and the Magnetoelectric Effect

- Nonlinear Optics
- Hexagonal Manganites
- Experimental Results
- > Summary

SH spectrum and Magnetic Symmetry

The magnetic symmetry, **not** the R ion, determines the SH spectrum of RMnO₃

Phase Coexistence and Spin Topography in ScMnO₃

Magnetoelectric Properties of Multiferroic RMnO₃

Max-Born-Institut

Magnetic Symmetry of Hexagonal RMnO₃

Second harmonic generation is the *only technique* capable of the determination of this magnetic phase diagram! 120 $\alpha_{\chi} (P \underline{6}_{3} c \underline{m})$ RMnO₃ $\begin{array}{c} \alpha_{\rho} & (P \underline{6}_{3}) \\ \alpha_{\gamma} & (P \underline{6}_{3} \underline{c} m) \end{array}$ ¥100 Temperature 80 60 Ho Sc Lu Yb Tm Er In Υ In-plane lattice constant — 6.155 Å 5.833 Å ____

Phys. Rev. Lett. 84, 5620 (2000)

SHG in a Multiferroic Compound

Two-dimensional expansion of the SH susceptibility χ for electric and magnetic order parameters

$$\vec{P}^{NL}(2\omega) = \varepsilon_0 \left[\hat{\chi}(0) + \hat{\chi}(\wp) + \hat{\chi}(\wp) + \hat{\chi}(\wp) + \dots \right] \vec{E}(\omega) \vec{E}(\omega)$$

- $\chi(0)$: Paraelectric paramagnetic contribution always allowed
- $\chi(P)$: (Anti)ferroelectric contribution
- $\chi(\ell)$: (Anti)ferromagnetic contribution
- $\chi(\mathcal{P}\ell)$: Ferroelectromagnetic contribution

- allowed below
- the respective
- ordering temperature
- SHG allows simultaneous investigation of magnetic and electric structures
- Selective access to electric and magnetic sublattices
- Ferroelectromagnetic contribution reveals the magneto-electric interaction between the sublattices

Symmetry analysis

Ordered Sublattice	Space group	Parity - type symmetry operation	Order parameter
(para)	P6 ₃ /mmc	I, T, IT	
FEL	P6 ₃ cm	Т	${\cal P}$
AFM	P <u>6₃/mcm</u>		l
FEL + AFM	P <u>6</u> ₃c <u>m</u>		$\mathcal{P} \cdot \ell$

		$\mathbf{S}^{ED}(\mathcal{P})$	$\mathbf{S}^{MD}(\ell)$	$\mathbf{S}^{EQ}(\ell)$	$\mathbf{S}^{ED}(\mathcal{P}\cdot \ell)$
k x	Sy	$2i_1E_yE_z$			$e_1 E_y^2$
	S _z	$i_2 E_y^2 + i_3 E_z^2$			
k y	S _x	$2i_1E_xE_z$		$-2q_1E_xE_z$	
	S _z	$i_2 E_x^2 + i_3 E_z^2$	$m_1 E_x^2$	$-q_2 E_x^2$	
k z	S _x		$-2m_1E_xE_y$	$-2q_3E_xE_y$	$-2e_1E_xE_y$
	Sy		$m_1(E_y^2 - E_x^2)$	$q_3(E_y^2 - E_x^2)$	$e_1(E_y^2 - E_x^2)$

MBI

Magnetoelectric Second Harmonic Generation

Observation of Ferroelectromagnetic Domains

- Independent ferroelectric (∝ 𝒫) and ferroelectromagnetic (∝ 𝒫 ℓ) domain structures; antiferromagnetic domain structure (∝ ℓ) is not!
- Any reversal of the FEL order parameter is clamped to a reversal of the AFM order parameter
- Origin: Piezomagnetic interaction between lattice distortions at the FEL domain wall and magnetization induced by the AFM domain wall decreases the free energy

Nature 419, 818 (2002)

Interaction of electric and magnetic domain walls

AFM wall carries an intrinsic macroscopic mag-netization

FEL wall induces strain due to switching of polarization

 \succ Width of walls:

• AFM - O[10³] unit cells: small in-plane anisotropy

iii • FEL – O[10⁰] unitcells: large uniaxialanisotropy

Piezomagnetic contribution $H_{pm} = q_{ijk} M_i \sigma_{jk}$ with $\sigma \propto P_z \rightarrow$ higher-order magnetoelectric effect

Generation of an antiferromagnetic wall clamped to a ferroelectric wall leads to reduction of free energy. Phys. Rev. Lett. 90, 177204 (2003)

H/T Phase Diagram of Hexagonal RMnO₃

Magnetoelectric Properties of Multiferroic RMnO₃

Magnetoelectric 3d-4f Superexchange in RMnO₃

Spontaneous Magnetoelectric Effect in HoMnO₃

Antiferromagnetic SH

Ferroelectric poling quenches magnetic signal!

Only Explanation:

 $\chi_{\rm xxx}$ unpoled χ_{yyy} $\boldsymbol{\chi}_{xxx}$ SH-Intensity (a.u.) poled χ_{yyy} T_{N} 0 80 20 90 0 10 30 40 50 60 70 Temperature (K)

Magnetic phase transition triggered by the internal electric field!

\Rightarrow spontaneous magnetoelectric effect!

Magnetoelectric effect only allowed for β_x phase with ferromagnetic ordering of Ho³⁺-spins!

Magnetization Control by Electric Field in HoMnO₃

Farraday rotation depends on the direction of the external electric field!

- Only possible due to magnetoelectric effect!
- Magnetoelectric effect only alowed for β_x phase in HoMnO₃!

Evidence of magnetic phase transition induced by magnetoelectric effect!

Magnetoelectric Properties of Multiferroic RMnO₃

Magnetoelectric Properties of Multiferroic RMnO₃

Multiferroics and the Magnetoelectric Effect

- Nonlinear Optics
- Hexagonal Manganites
- Experimental Results

Summary

Multiferroic hexagonal manganites $RMnO_3$ are a modell substance to investigate magnetoelectric interactions in a ferroelctromagnetic material:

- Coupling of ferroelctric and antiferromagnetic order parameters leads to "magnetoelectric" SHG
- "Ferroelectromagnetic" domains due to interaction of ferroelectric and antiferromagnetic domain walls
- Magnetoelectric effect leads to spontanous phase transition in compounds with R = Ho – Yb
- Control of the magnetic phase by the electric field due to magnetoelectric effect

Acknowledgment

Germany:

D. Fröhlich, M. Fiebig, St. Leute, C. Degenhard, M.Maat, S. Kallenbach, Th. Lonkai

Russia:

R.V. Pisarev, V.V. Pavlov, A.V. Goltsev

Japan:

K. Kohn, Y. Tanabe, E. Hanamura

