Giant magnetoelectric effect in the ferroelectric antiferromagnet HoMnO₃

Th. Lottermoser, Th. Lonkai, U.Amman, J.Ihringer, D. Hohlwein, M. Fiebig

DPG-Frühjakrstagung Regensburg, März 2004

Linear Magnetoelectric Effect

Limited choice of compounds

2000:

- New theoretical concepts
- "Gigantic" effects: induction of phase transitions
- New materials: multiferroics, composites, "magnetoelectricity on design"

Ferromagnetic Layers

Giant magnetoelectric effect in the ferroelectric antiferromagnet HoMnO₃ Max-Born-Institut

Laver

Optical Second Harmonic Generation

- Linear coupling of SHG to electric order parameter
- Linear coupling of SHG to magnetic order parameter
- > SH tensor components χ_{iik} reveal the electric **and** magnetic structure

Experimental Setup

Basic setup with a pulsed Nd:YAG - OPO laser system (3 ns, ≤100 Hz, 0.4 - 3.0 mm)

Hexagonal Manganites RMnO₃

Mn³⁺

O(z = 0)

*R*MnO₃: A highly correlated and ordered system

- Paraelectric → Ferroelectric (PEL - FEL): T_C = 570 - 990 K
- Para- \rightarrow Antiferromagnetic (PM - AFM): T_N = 70 - 130 K

Ferroelectromagnetism:

Coexisting electric and magnetic order

- Ferroelectromagnetism for R = Sc, Y, In, Ho, Er, Tm, Yb, Lu
- Additional rare-earth order at T_C ≈ 5 K for Ho, Er, Tm, Yb

AFM

PM

Magnetic Structure and SHG Selection Rules

At least 8 different triangular inplane spin structures with different magnetic symmetries and different selection rules for SHG

 α structures:SHG for k||z allowed $\alpha_x (\phi = 0^\circ)$: $\chi_{xxx} = 0$, $\chi_{yyy} \neq 0$ $\alpha_y (\phi = 90^\circ)$: $\chi_{xxx} \neq 0$, $\chi_{yyy} = 0$ $\alpha_\rho (\phi = 0.90^\circ)$: $\chi_{xxx} \propto \sin \phi$, $\chi_{yyy} \propto \cos \phi$ β structures:SHG for k||z not allowed β_x , β_v , β_o : $\chi_{xxx} = 0$, $\chi_{yyy} = 0$

Determine β structure from α - β transition

 $\begin{array}{ll} \alpha_{\rm x} \to \beta_{\rm y} : & \chi_{\rm xxx} = 0, & \chi_{\rm yyy} \propto \cos \varphi \\ \alpha_{\rm y} \to \beta_{\rm x} : & \chi_{\rm xxx} \propto \sin \varphi, & \chi_{\rm yyy} = 0 \end{array}$

Contrary to diffraction techniques: α and β models clearly distinguishable!

SH spectrum and Magnetic Symmetry

MBI

H/T Phase Diagram of Hexagonal RMnO₃

Max-Born-Institut Giant magnetoelectric effect in the ferroelectric antiferromagnet HoMnO₃

Magnetoelectric 3d-4f Superexchange in RMnO₃

Spontaneous Magnetoelectric Effect in HoMnO₃

Antiferromagnetic SH

Temperature (K)

Ferroelectric poling quenches magnetic signal!

Only Explanation:

Magnetic phase transition triggered by the internal electric field!

\Rightarrow spontaneous magnetoelectric effect!

Magnetoelectric effect only allowed for β_x phase with ferromagnetic ordering of Ho³⁺-spins!

Magnetization Control by Electric Field in HoMnO₃

Farraday rotation depends on the direction of the external electric field!

Only possible due to magnetoelectric effect!

Magnetoelectric effect only alowed for β_x phase in HoMnO₃!

Evidence of magnetic phase transition induced by magnetoelectric effect!

Neutron Diffraction Results for HoMnO₃

11

- 2D short range order above T_N due to Mn-O-Mn intra planar superexchange
- 3D long range order via Mn-O-O-Mn interplanar super-superexchange
- Antiferromagnetic in-chain alignment of Ho due to interplanar Ho-O-Ho superexchange, stabilized by DM-exchange leads to diffusive phase transition
- Intraplanar Ho-Ho-exchange leads to low temperature phase transition

Change of Mn-position at low temperature phase transition:

Connected with ferroelectric distortion ||c

 \rightarrow Magnetoelectric phase transition

Summary

- Magnetoelectric effect in hexagonal manganites RMnO₃ with R = Ho – Yb
- Observation with magneto-optical methods
- Microscopic origin by neutron diffraction
- Magnetic phase controlled by electric field: Activation/deactivation of ferromagnetic state
- > Origin: "giant" magnetoelectric effect $H_{me} = \alpha DB$

