Determination of the Magnetic Symmetry of Hexagonal Manganites by Second Harmonic Generation

Th, Lottermoser¹, C, Degenhardt¹, M, Fiebig¹, D, Fröhlich¹, K, Kohn², St, Leute¹, V, V, Pavlov³, and R, V, Pisarev³

1) Institut für Physik, Universität Dortmund, 44221 Dortmund, Deutschland 2) Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan 3) loffe Physical Technical Institute of the Russian Academy of Sciences, 194021 St. Petersburg, Russia

Motivation

In the hexagonal manganites RMnO₃ (R = Y, Sc, Ho, Er, Tm, Yb, Lu), a phase transition from the paramagnetic into the antiferromagnetic phase occurs at $T_N = 70 - 130$ K. With neutron or magnetic x-ray diffraction experiments it is not possible to determine unambiguously the antiferromagnetic structure of the frustrated Mn3+ spins.

 \Rightarrow Introduction of a new optical method:

Polarisation dependent spectroscopy of magnetic second harmonic (MSHG)

Second-order nonlinear polarisation:

Second-order nonlinear susceptibility in magnetically ordered crystals:

crystal structure

Studying the structure of the nonlinear susceptibility $\chi_{iik}^{mag}(c)$ allows the determination of the magnetic structure. The nonvanishing components of $\chi_{iik}^{mag}(c)$ are given by measurements of the

spectral, polarization, and temperature dependence.

Spatially resolved measurements lead to additional information.

Interaction of Mn and Er magnetic sublattices

Conclusions

- · MSHG is an important complement to neutron and x-ray diffraction experiments for symmetry analysis
- Additional degrees of freedom:
- Spectroscopy
- Topography α-type ordering of hexagonal RMnO₂ compounds
- Phase coexistance ⇒ small in plane anisotropy

Phase transitions in HoMnO₃ and LuMnO₃ T = 6 K HoMnO₂:

transition at 41 K:

LuMnO₂:

the symmetry:

 $T \rightarrow 0$ K: Transfer from

 $\chi(\alpha_1) \oplus \chi(\alpha_2)$

