Th. Lottermoser, M. Fiebig, T. Arima, Y. Tokura

PROMOX2, APRIL 2005

Introduction: Magnetoelectric Effect & Multiferroics

- Multiferroic Manganites with Perovskite Structure
 - Electric Polarization Control by Magnetic Field
- Multiferroic Manganites with Hexagonal Structure
 - Magnetization Control by Electric Field
 - Magnetoelectric Second Harmonic Generation (SHG)
 - Domains and Domain Walls
- Superlattices as Artificial Multiferroics

Linear Magnetoelectric Effect

New materials: multiferroics, composites, "magnetoelectricity on design"

ERATO-SSS

Multiferroic Compounds

Compounds with simultaneous (anti-)ferromagnetic, ferroelectric, ferrotoroidic and/or ferroelastic ordering (Aizu 1969)

 \Rightarrow Multiferroics

Compounds with only simultaneous magnetic and electric ordering

 \Rightarrow Magnetic ferroelectrics or ferroelectromagnets

Multiferroic hysteresis in $Ni_3B_7O_{13}I$ (Ascher et al. 1966)

ERATO-S

1958 Idea of new compounds with coexisting magnetic and electric ordering by Smolenskii and loffe

- **1966** First experimental proof of a "multiferroic effect" by Ascher et al.
- **1975** Suggestions for technical applications based on multicferroic properties by Wood and Austin

2000 "Why are there so few magnetic ferroelctrics?" by Hill

Why Multiferroics?

The magnetoelectric coupling constant α_{ij} is small ($\alpha_{ij}^2 < \chi^e_{ii} \chi^m_{jj}$)

 \Rightarrow Applying external magnetic/electric fields lead only to small ME effects

Multiferroics with magnetic and electric ordering exhibit strong internal electromagnetic fields!

ME contribution to free energy:

$$H_{ME} = \alpha DB$$
 with $D = \varepsilon_0(E+P)$, $B = \mu_0(H+M)$

\Rightarrow Observation of 'giant' ME effects

- Magnetic or electric phase transitions
- Control of magnetization/polarization by electric/magnetic field

Other effects based on the coexisting orders in multiferroics:

- Interaction of magnetic and electric domains and domain walls
- Appereance of ME contributions to nonlinear optical signals

Introduction: Magnetoelectric Effect & Multiferroics

Multiferroic Manganites with Perovskite Structure

- Electric Polarization Control by Magnetic Field
- Multiferroic Manganites with Hexagonal Structure
 - Magnetization Control by Electric Field
 - Magnetoelectric Second Harmonic Generation (SHG)
 - Domains and Domain Walls
- Superlattices as Artificial Multiferroics

Electric Polarization Control by Magnetic Field

Magnetic control of ferroelectric polarization in TbMnO₃:

At 42 K incommensurate antiferromagnetic Mn³⁺ ordering

At 27 K incommensurate/commensurate 'lock-in' transition of Mn³⁺ spins

- ⇒ magnetoeleastic displacements of Mn³⁺ ions
- ⇒ spatial variation of electric dipolmoments
- \Rightarrow ferroelectric ordered phase

Applying of an external magnetic field leads to 90° rotation of polarization

 \Rightarrow 'giant' ME effect!

Electric Polarization Control by Magnetic Field

Electric polarization reversal and memory in in $TbMn_2O_5$ induced by magnetic fields:

Exchange interactions between Mn³⁺, Mn⁴⁺, Tb³⁺ spins and lattice polarization lead to several phase transitions.

Below 10 K:

Magnetic ordring of Mn³⁺/Mn⁴⁺ and Tb³⁺ spins

Ferroelectric polarization $P = P_1 + P_2(H)$ with P_1 antiparallel P_2

Modulation of $P_2(H)$ by external magnetic field leads to sign reversal of the overall polarization P

- Introduction: Magnetoelectric Effect & Multiferroics
- Multiferroic Manganites with Perovskite Structure
 - Electric Polarization Control by Magnetic Field

Multiferroic Manganites with Hexagonal Structure

- Magnetization Control by Electric Field
- Magnetoelectric Second Harmonic Generation (SHG)
- Domains and Domain Walls
- Superlattices as Artificial Multiferroics

Optical Second Harmonic Generation

In general: Multipole expansion of source term \vec{S} for SHG: $\vec{S} = \mu_0 \frac{\partial^2 \vec{P}^{NL}}{\partial t^2} + \mu_0 \left(\vec{\nabla} \times \frac{\partial \vec{M}^{NL}}{\partial t} \right) - \mu_0 \left(\vec{\nabla} \frac{\partial^2 \hat{Q}^{NL}}{\partial t^2} \right)$ \Rightarrow Three nonlinear contributions: Electric dipole (ED): $\vec{P}^{NL}(2\omega) \propto \hat{\chi}^{ED} : \vec{E}(\omega)\vec{E}(\omega)$ Magnetic dipole (MD: $\vec{M}^{NL}(2\omega) \propto \hat{\chi}^{MD} : \vec{E}(\omega)\vec{E}(\omega)$ Electric quadrupole (EQ): $\hat{Q}^{NL}(2\omega) \propto \hat{\chi}^{EQ} : \vec{E}(\omega)\vec{E}(\omega)$

ERATO-SSS

SHG in a Ferroelectromagnetic Multiferroic

Two-dimensional expansion of the Second Harmonic (SH) susceptibility χ for electric (P) and magnetic (ℓ) order parameters

$$\vec{P}^{NL}(2\omega) = \varepsilon_0 \left[\hat{\chi}(0) + \hat{\chi}(\wp) + \hat{\chi}(\ell) + \hat{\chi}(\wp) + \dots \right] \vec{E}(\omega) \vec{E}(\omega)$$

- $\chi(0)$: Paraelectric paramagnetic contribution always allowed
- $\chi(P)$: (Anti)ferroelectric contribution
- $\chi(\ell)$: (Anti)ferromagnetic contribution
- $\chi(\mathcal{P}\ell)$: Multiferroic contribution

allowed below

the respective

_ordering temperature

- SHG allows simultaneous investigation of magnetic and electric structures
- Selective access to electric and magnetic sublattices
- Multiferroic contribution reveals the magneto-electric interaction between the sublattices

Crystallographic and Magnetic Structure of *R***MnO**₃

*R*MnO3 (*R* = Sc, Y, In, Ho, Er, Tm, Yb, Lu) : A highly correlated and ordered system!

Ferroelectric phase transition:

 $T_{c} = 570 - 990 \text{ K}$

Breaking of inversion symmetry I!

Antiferromagnetic phase transition of the Mn³⁺ sublattice:

 $T_{N} = 70 - 130 \text{ K}$

Breaking of time-reversal symmetry T, but *not* of inversion symmetry I!

ERATO-SSS

Additional rare-earth order:

 $T_{C} \approx 5 \text{ K}$ for Ho, Er, Tm, Yb

Magnetic Structure and SHG Selection Rules

At least 8 different triangular inplane spin structures with different magnetic symmetries and different selection rules for SHG

 α structures: SHG for k||z allowed $\alpha_x (\phi = 0^\circ)$: $\chi_{xxx} = 0$, $\chi_{yyy} \neq 0$ $\alpha_{v} (\phi = 90^{\circ}): \quad \chi_{xxx} \neq 0, \qquad \chi_{yyy} = 0$ $\alpha_{\rho} (\phi = 0.90^{\circ}): \chi_{xxx} \propto \sin \phi, \chi_{yyy} \propto \cos \phi$ **β** structures: SHG for k||z not allowed $\beta_x, \beta_v, \beta_o$: $\chi_{\rm xxx} = 0, \qquad \chi_{\rm vvv} = 0$ **Determine** β structure from α - β transition $\alpha_{x} \rightarrow \beta_{v}$: $\chi_{xxx} = 0$, $\chi_{yyy} \propto \cos \phi$

Contrary to diffraction techniques: α and β models clearly distinguishable!

SH spectrum and Magnetic Symmetry

The magnetic symmetry, *not* the R ion, determines the SH spectrum of *R*MnO₃

ERATO-SSS

H/T Phase Diagram of Hexagonal RMnO₃

Magnetoelectric 3d-4f Superexchange in RMnO₃

ERATO-SSS

Magnetization Control by Electric Field

Electric field suppresses magnetic SHG and leads to additional field depended contribution to Faraday rotation

 \Rightarrow Induction of magnetic phase transition!

ME contribution to free energy:

 $H \propto \alpha_{zz} P_z S_z^{Ho}$

Ferroelectric poling and ferromagnetic ordering of Ho³⁺ spins

 \Rightarrow 'giant' ME effect

Magnetoelectric Second Harmonic Generation

Observation of Multiferroic Domains

- Independent ferroelectric (∝ 𝒫) and ferroelectromagnetic (∝ 𝒫 ℓ) domain structures; antiferromagnetic domain structure (∝ ℓ) is not!
- > "Multiferroic domains":
 *P*ℓ = +1 for *P* = ±1, ℓ = ±1
 *P*ℓ = -1 for *P* = ±1, ℓ = ∓1
- Any reversal of the FEL order parameter is clamped to a reversal of the AFM order parameter
- Origin: Piezomagnetic interaction between lattice distortions at the FEL domain wall and magnetization induced by the AFM domain wall decreases the free energy

Nature 419, 818 (2002)

Interaction of electric and magnetic domain walls

Piezomagnetic contribution $H_{pm} = q_{ijk} M_i \sigma_{jk}$ with

 $\sigma \propto P_{\tau} \rightarrow$ higher-order magnetoelectric effect

AFM wall carries an intrinsic macroscopic mag-netization

FEL wall induces strain due to switching of polarization

 \succ Width of walls:

• AFM - O[10³] unit cells: small in-plane anisotropy

iii • FEL – O[10⁰] unit cells: large uniaxial anisotropy

Generation of an antiferromagnetic wall clamped to a ferroelectric wall leads to reduction of free energy. Phys. Rev. Lett. **90**, 177204 (2003)

Spin-Rotation Domains in HoMnO₃

Observation of drastically increased *dielectric constant* during *magnetic spin-reorientation* phase transition by Lorenz et. al. (PRL 92, 87204 (2004))

But: ME not allowed by symmetry considerations!

Inside AFM domain walls reduced local symmetry P2 due to uncompensated magnetic moment.

P2 allows ME contribution $P_z \propto \alpha_{zx,y} M_{x,y}$

\Rightarrow Local ME effect

- Introduction: Magnetoelectric Effect & Multiferroics
- Multiferroic Manganites with Perovskite Structure
 - Electric Polarization Control by Magnetic Field
- Multiferroic Manganites with Hexagonal Structure
 - Magnetization Control by Electric Field
 - Magnetoelectric Second Harmonic Generation (SHG)
 - Domains and Domain Walls

Superlattices as Artificial Multiferroics

Superlattices as Artificial Multiferroics

- 1. Asymmetric sequence of layers breaks inversion symmetry
- 2. Ferromagnetic ordering at SrMnO3/LaMn03 interface

Polar ferromagnet

Summary

- Coexistence of magnetic and electric ordering in multiferroics allow 'giant' magnetoelectric effects:
 - Electric/magnetic phase transitions
 - Control of polarization/magnetization by external magnetic/electric fields
- New effects based on the specific nature of multiferroics:
 - Interaction of magnetic and electric domains and domain walls
 - Magnetolectric second harmonic generation

Acknowledgment

Germany:

Th. Lonkai, D. Fröhlich, St. Leute, C. Degenhardt, T. Satoh

Russia:

R.V. Pisarev, V.V. Pavlov, A.V. Goltsev

Japan:

K. Kohn, Y. Tanabe, E. Hanamura, H. Yamada

